Distinct EEG seizure patterns reflect different seizure generation mechanisms.

نویسندگان

  • Pariya Salami
  • Maxime Lévesque
  • Jean Gotman
  • Massimo Avoli
چکیده

Low-voltage fast (LVF)- and hypersynchronous (HYP)-seizure onset patterns can be recognized in the EEG of epileptic animals and patients with temporal lobe epilepsy. Ripples (80-200 Hz) and fast ripples (250-500 Hz) have been linked to each pattern, with ripples predominating during LVF seizures and fast ripples predominating during HYP seizures in the rat pilocarpine model. This evidence led us to hypothesize that these two seizure-onset patterns reflect the contribution of neural networks with distinct transmitter signaling characteristics. Here, we tested this hypothesis by analyzing the seizure activity induced with the K(+) channel blocker 4-aminopyridine (4AP, 4-5 mg/kg ip), which enhances both glutamatergic and GABAergic transmission, or the GABAA receptor antagonist picrotoxin (3-5 mg/kg ip); rats were implanted with electrodes in the hippocampus, the entorhinal cortex, and the subiculum. We found that LVF onset occurred in 82% of 4AP-induced seizures whereas seizures after picrotoxin were always HYP. In addition, high-frequency oscillation analysis revealed that 4AP-induced LVF seizures were associated with higher ripple rates compared with fast ripples (P < 0.05), whereas picrotoxin-induced seizures contained higher rates of fast ripples compared with ripples (P < 0.05). These results support the hypothesis that two distinct patterns of seizure onset result from different pathophysiological mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct Eeg Seizure Patterns Reflect Different Seizure

33 Low-voltage fast-(LVF) and hypersynchronous-(HYP) seizure onset patterns can be recognized 34 in the EEG of epileptic animals and patients with temporal lobe epilepsy. Ripples (80-200 Hz) 35 and fast ripples (250-500 Hz) have been linked to each pattern, with ripples predominating 36 during LVF seizures and fast ripples predominating during HYP seizures in the rat pilocarpine 37 model. This ...

متن کامل

Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology.

Because seizures originate from different pathological substrates, the question arises of whether distinct or similar mechanisms underlie seizure generation across different pathologies. Better defining intracranial electroencephalographic morphological patterns at seizure-onset could improve the understanding of such mechanisms. To this end, we investigated intracranial electroencephalographic...

متن کامل

The cause of the imbalance in the neuronal network leading to seizure activity can be predicted by the electrographic pattern of the seizure onset.

This study investigates the temporal dynamics of ictal electrical activity induced by injection of the GABA(A) receptor antagonist bicuculline, and the glutamate agonist kainic acid, into the CA3 area of hippocampus. Experiments were conducted in freely moving adult Wistar rats implanted with microelectrodes in multiple brain areas. Wide-band electrical activity (0.1-3000 Hz) was recorded, and ...

متن کامل

Using Permutation Entropy to Measure the Changes in EEG Signals During Absence Seizures

In this paper, we propose to use permutation entropy to explore whether the changes in electroencephalogram (EEG) data can effectively distinguish different phases in human absence epilepsy, i.e., the seizure-free, the pre-seizure and seizure phases. Permutation entropy is applied to analyze the EEG data from these three phases, each containing 100 19-channel EEG epochs of 2 s duration. The exp...

متن کامل

Newborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain

This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 113 7  شماره 

صفحات  -

تاریخ انتشار 2015